Determinant

$$
(\ln G R E, \quad \operatorname{det}(A)=|A|)
$$

Def $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad \operatorname{det}(A)=a d-b c$

$$
\operatorname{AE} \mathbb{F}^{n \times n} \quad \begin{aligned}
& n \text { removing } \\
& \operatorname{det}(A) i \text { th row } \\
& j \text { eth column } \\
& i=1
\end{aligned}(-1)^{i j} \operatorname{det}\left(A^{i j}\right) \text { for } 1 \leq j \leq n
$$

Prop $\cdot \operatorname{det}\left(I_{0}\right)=1 \quad I_{n}: \pi \times n$ identity matrix
$-\operatorname{det}\left(\begin{array}{c}\vdots_{j} \\ A_{j} \\ \dot{A}_{i}\end{array}\right)=-\operatorname{det}(A)$

- $\operatorname{det}\left(\begin{array}{c}\vdots \\ c \\ A_{i} \\ \vdots\end{array}\right)=c \operatorname{det}(A)$
- $\operatorname{det}\left(\begin{array}{c}\vdots \\ A_{i}+c A_{j} \\ i\end{array}\right)=\operatorname{det}(A) \quad(i \neq j)$
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- $\operatorname{det}(A) \neq 0 \Leftrightarrow A$ is non-singular.

Def $A \in \mathbb{F}^{n \times n} \quad \operatorname{tr}(A):=\sum_{i=1}^{n} a_{i i}$
Prop $\cdot \operatorname{tr}(C A+B)=c \operatorname{tr}(A)+\operatorname{tr}(B) \quad\left(\operatorname{tr}: \mathbb{F}^{n \times n} \rightarrow \mathbb{F}\right)$

$$
\cdot \operatorname{tr}(A B)=\operatorname{tr}(B A)
$$

$$
\sin . t f .
$$

Eiger values \& eigenvectors

Def $A \in \mathbb{R}^{n \times n}$. An eigenvalue of A is $\lambda \in \mathbb{F}$ sit.

$$
A v=\lambda \cdot v
$$

for some $V \in \mathbb{F}^{n}, V \neq 0$. V is called a_{n} eigenvector of λ

Suppose λ is an eigenvalue of A. Then

$$
\begin{aligned}
& A v=\lambda v \Rightarrow(A-\lambda I) v \\
& \Rightarrow \underbrace{}_{\text {Polynomial of }} \quad \lambda .
\end{aligned}
$$

Def Characteristic polynomial of A is

$$
P_{A}(\lambda):=\operatorname{det}(A-\lambda I)
$$

Prop (Caley-Hamiltoo)

$$
\left(\underline{r m k} P_{A}(A)=0\right)
$$

$$
A \in \mathbb{R}^{2 \times 2}, \quad P_{A}(\lambda)=\lambda^{2}-\operatorname{tr}(A)+\operatorname{det}(A)
$$

Thy (Characterization of nonsingular matrices)

$$
A \in \mathbb{R}^{n \times n} \text {. TFAE }
$$

1) \mathbf{A} is non-singular
2) A invertible
3) $r k(A)=n$
4) columns of A are lin. indef.
5) null $(A)=0 \quad(N(A)=\{0\})$
6) T_{A} bijective (isomorphism)
7) $\operatorname{det}(A) \neq 0$
8) θ is not an eigenvalue of A.

Diagonal ization

Def $A, B \in \mathbb{R}^{n \times n}$. A and B are similar if $A=P B^{-1}$ for some $P \in \mathbb{R}^{n \times n}$

Prop If $A \sim B$ (similar)

- $P_{A}(\lambda)=P_{B}(\lambda)$
- $\operatorname{det}(A)=\operatorname{det}(B)$
- $\operatorname{tr}(A)=\operatorname{tr}(B)$
- same eigenvalues.

Def $A \in \mathbb{R}^{n+n} \quad A$ is diagnalizable if \boldsymbol{A} is similar to a diagonal matrix.
In this case $P=\left[\begin{array}{lll}v_{1} & \ldots & v_{n}\end{array}\right]$ where V_{i} 's are lin. indef. eigenvectors of A.

In $A \in \mathbb{R}^{n \times n}$.
A is diagonalizable \Leftrightarrow A has n lin. indep. eigen vectors.
e.g $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad A$ is not diagonalizable since the dimension of the eigenspace is 1 .

Orthogonal matrices

Def (transpose) $\left(A^{t}\right)_{i j}=A_{j i}$
e. $2 \quad\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]^{t}=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$

Def (Standard inner product) $u, v \in \mathbb{F}^{n}$

$$
\langle u, v\rangle=u^{t} \cdot v
$$

rink $\langle A u, v\rangle=\left\langle u, A^{t} v\right\rangle \quad A \in \mathbb{R}^{n \times n}$

Def $A \in \mathbb{R}^{n \times n}$ is an orthogonal matrix if
$\langle A u, \Delta v\rangle=\langle u, v\rangle$
for any $u, v \in \mathbb{R}^{n}$

Prop If A is an orthogonal matrix.

$$
\text { - } A^{t} A=A A^{t}=I
$$

Def $A \in \mathbb{R}^{n \times n} A$ is a symmetric matrix if

$$
A^{t}=A .
$$

Thu (Spectral tm) A symmetric matrix is diagonalizable

$$
A=U D \boldsymbol{U}_{t}^{\text {orthogonal matrix }}
$$

Complex matrices
Recall the conjugation is $\overline{a+b i}=a-b i$
Complex transpose (adjont) $\quad A^{*}=\overline{A^{t}}$
rib $\langle A u, v\rangle=\left\langle u, A^{*} v\right\rangle \quad A \in \mathbb{C}^{n \times n}$

Hermitian matrices (complex symmetric) $\quad \mathbf{A}^{*}=\mathbf{A}$
Unitary matrices (complex or thogonal) $A^{*} A=A A^{*}=I$ normal matrices $\quad A^{*} A=A^{*} A$

